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Abstract. Two-sided bounds are explored for concentration functions and Rényi entropies
in the class of discrete log-concave probability distributions. They are used to derive certain
variants of the entropy power inequalities.

1. Introduction

Given a random variable X, its concentration function is defined by

Q(X;λ) = sup
x

P{x ≤ X ≤ x+ λ}, λ ≥ 0. (1.1)

Of a large interest is also the particular value

M(X) = Q(X; 0) = sup
x

P{X = x}. (1.2)

These quantities are related to other important characteristics of probability distributions such
as the Shannon and Rényi entropies. Our original goal was to find effective two-sided bounds
on Q(X,λ) in the class of discrete log-concave distributions and thus to explore a number of
similarities with the well studied continuous setting.

Let us recall that an integer-valued random variable X (also called discrete) is said to
have a (discrete) log-concave distribution, if its probability function f(k) = P{X = k} has an
integer supporting interval supp(f) = {k ∈ Z : f(k) > 0}, and

f(k)2 ≥ f(k − 1)f(k + 1) for all k ∈ Z. (1.3)

Many classical discrete distributions belong to this class: discrete uniform, Bernoulli, binomial
and convolutions of Bernoulli distributions with arbitrary parameters, Poisson, geometric,
negative binomial, etc. (cf. [7] and references therein). It is therefore interesting to know
how basic characteristics of such distributions are connected with each other: variance, mo-
ments, concentration function, entropies, in analogy with usual log-concave distributions in
the continuous setting (for which the densities with respect to the linear Lebesgue measure
are log-concave). While a number of challenging questions about this class are still open, in
this paper we develop several techniques (reduction to the continuous setting, rearrangement)
and describe some of the results in this direction. In particular, we prove:
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Theorem 1.1. If the random variable X has a discrete log-concave distribution, then

1√
1 + 12 Var(X)

≤M(X) ≤ 2√
1 + 4 Var(X)

. (1.4)

Moreover, if the distribution of X is symmetric about a point, then the above upper bound
may be sharpened to

M(X) ≤ 1√
1 + 2 Var(X)

. (1.5)

The inequality (1.5) becomes an equality for two-sided geometric distributions, that is,

for densities f(k) = cp p
|k|, k ∈ Z, with an arbitrary value p ∈ (0, 1), where cp = 1−p

1+p is a

normalizing constant. As for the lower bound in (1.4), it does not need any log-concavity
assumption; here the factor 12 in front of the variance of X is optimal, as can be seen on the
example of discrete uniform distributions.

Relations similar to (1.4)-(1.5) with involved parameter λ may also be stated for the corre-
sponding concentration functions (see Section 8). Let us however turn to information-theoretic
applications of Theorem 1.1 such as entropy power inequalities (EPI’s).

If the random variable X has an absolutely continuous distribution with density f(x) with
respect to the Lebesgue measure (the continuous setting), the differential Rényi entropy power
of a given order α > 0, α 6= 1, is defined by

Nα(X) =
(∫ ∞
−∞

f(x)α dx
)− 2

α−1
, (1.6)

while the limit case N(X) = limα→1Nα(X) represents the Shannon differential entropy power.
As is well-known, this functional is subadditive on convolutions, that is, it satisfies a funda-
mental EPI

N(Sn) ≥ N(X1) + · · ·+N(Xn), (1.7)

where Sn = X1 + · · · + Xn is the sum of independent continuous random variables. A more
general relation such as

Nα(Sn) ≥ cα
(
Nα(X1) + · · ·+Nα(Xn)

)
(1.8)

with cα = α
1

α−1 , α > 1, is also true for Rényi entropy powers. We refer an interested reader
to [3], cf. also [15], [25], [5], [13], [18], and [14] for other variants and extensions of (1.7).

If X takes only integer values with density f(k) with respect to the counting measure, the
Rényi entropy power is defined similarly to (1.6) as

Nα(X) = e2Hα(X) =

(∑
k∈Z

f(k)α
)− 2

α−1

. (1.9)

Here

Hα(X) = − 1

α− 1
log
∑
k∈Z

f(k)α

is the classical Rényi entropy, with the limit case

H1(X) = H(X) = −
∑
k∈Z

f(k) log f(k).
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Both in the discrete and continuous settings, these entropies are monotone in the sense that
they may only increase when adding an independent summand to a given random variable.
However, while the EPI (1.7) quantifies this property in the continuous setting, not much is
known so far about the discrete random variables. The inequality (1.7) has been verified to
be true in [10] for the family of the (symmetric) binomial distributions (cf. also [8], [17]). In
the general discrete case, it was shown in [9] that

H(X1 +X2) ≥
1

2
H(X1) +

1

2
H(X2) + g

(
H(X1), H(X2)

)
for some positive doubly-increasing function g on R2

+ such that g(x1, x2)→ 1
8 as x1, x2 →∞.

Anyhow, as far as we know, the inequality (1.7) is no longer true in the general discrete case.
It seems the nature of the discrete entropy power is different, since for example necessarily
Nα(X) ≥ 1. The functionals

∆α(X) = Nα(X)− 1,

reflecting the size of the variance more accurately (in analogy with the “continuous” entropy
power), seem to be more appropriate and therefore more suitable from the point of view of
EPI’s. This can be seen from the following assertion.

Theorem 1.2. If the independent random variables Xk (1 ≤ k ≤ n) have symmetric
discrete log-concave distributions, then

1

cα

n∑
k=1

∆α(Xk) ≤ ∆α(Sn) ≤ cα

n∑
k=1

∆α(Xk) (1.10)

for any α > 1 with cα = 2(3α−1)
α−1 . Moreover, in the case 1 < α ≤ 2, the symmetry assumption

may be dropped, while the constant may be improved to the value cα = 3α−1
α−1 .

In this connection, let us mention a recent paper [21] dealing with similar problems. In
particular, it is shown there that for (not necessarily symmetric) Bernoulli summands Xk and

all α ≥ 2, the left inequality in (1.10) remains to hold with cα = 6(α−1)
α ≤ 6. It was also

observed that such a lower bound is no longer true for α = 1 with any fixed positive constant
in place of cα. It would be interesting to explore whether or not it is possible to remove the
symmetry assumption in Theorem 1.2 for the whole range of α’s.

One may complement these relations with similar ones for the entropy powers in analogy
with (1.8). To this aim, we involve an additional condition on the variances of the summands.

Theorem 1.3. If the random variables Xk have discrete log-concave distributions, and
Var(Xk) ≥ σ2 > 0 for all k ≤ n, then for any α ≥ 1,

Nα(Sn) ≥ 1

cσ

n∑
k=1

Nα(Xk), (1.11)

where cσ = 2πe (1 + 1
12σ2 ). In fact, without any condition on the variances, this lower bound

may be reversed to the form

Nα(Sn) ≤ −πe
6

(3n− 1) + 2πe
n∑
k=1

Nα(Xk). (1.12)
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The paper is organized as follows. We start with general upper bounds for the Rényi entropy
powers in terms of variance and recall known results in the continuous setting (including an
important theorem due to Moriguti). Such results are used in Section 3 to derive similar
upper bounds for discrete random variables. In Section 4 we turn to the notion of discrete
log-concavity and first recall its relationship with purely algebraic problems. Sections 5-6
connects discrete log-concave distributions with usual (continuous) log-concave measures on
the real line. In this way, one may derive a number of interesting relations in the discrete
setting, although not always with sharp constants. As a sharpening approach, in Section 7 we
develop rearrangement arguments, which allow to complete the proof of Theorem 1.1. A more
general form of this theorem is considered in Section 8 in terms of concentration functions.
Proof of Theorems 1.2-1.3 is postponed to Section 9, and in the last Section 10 we conclude
the exposition with remarks on Bernoulli sums.

2. Maximum to Rényi Entropy Subject to Variance Constraint

In the discrete case, the M -functional (1.2) may be viewed as a member in the hierarchy of
Rényi entropies. More precisely, letting α→∞, the definition (1.9) leads to the identity

N∞(X) = M(X)−2. (2.1)

Convention. In the continuous case, if a random variable X has density f(x), put

M(X) = ess supx f(x).

Thus, we use the same notation for two formally different objects, in analogy with Nα. As
a consequence, the formula (2.1) remains true both in the continuous and discrete setting, as
follows from the definition (1.6).

First let us state one elementary general relation connecting the M -functional to variance.

Proposition 2.1. Given a continuous random variable X with a fixed variance, the M -
functional is minimized for the uniform distribution on a finite interval. Equivalently,

M2(X) Var(X) ≥ 1

12
. (2.2)

The equality here is attained if and only if X has a uniform distribution on a finite interval.

This relation is well-known, and here we recall a simple argument. One may assume that
X has a finite second moment with M(X) = 1 (by homogeneity). Then the non-negative
function u(x) = P{|X − EX| ≥ x} is Lipschitz (therefore absolutely continuous) and satisfies
u(0) = 1, u′(x) ≥ −2 a.e., so that u(x) ≥ 1− 2x for all x ≥ 0. This gives

Var(X) = 2

∫ ∞
0

xu(x) dx ≥ 2

∫ 1/2

0
xu(x) dx ≥ 2

∫ 1/2

0
x(1− 2x) dx =

1

12
.

�
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Now, let us restate (2.2) as a homogeneous inequality (with respect to X)

N∞(X) ≤ 12 Var(X). (2.3)

Importantly, this relation may be extended to Rényi entropies of all orders α ≥ 1. The problem
of maximization of Nα(X) when the variance is fixed was considered and solved by Moriguti
in 1952 (cf. also [12] and [6] for a multidimensional extension).

Proposition 2.2 ([22]). Let 1 < α < ∞. Given a continuous random variable X with a
fixed variance, the Rényi entropy power Nα(X) is maximized for the distribution whose density

fα is supported on the interval (−1, 1) and is proportional there to (1− x2)
1

α−1 . Equivalently,

Nα(X) ≤ AαVar(X), (2.4)

where the constant Aα corresponds to fα.

The inequality (2.4) is affine invariant, so it is equivalent to the formally weaker relation
Nα(X) ≤ Aα EX2 which was actually considered in [22].

Thus, the extremal density has the form fα(x) = cα(1 − x2)
1

α−1 , |x| < 1, in which the
normalizing constant is given by

cα =
1

B( α
α−1 ,

1
2)

=
Γ
(

3α−1
2(α−1)

)
Γ( α

α−1) Γ(12)
. (2.5)

In this case, as was already noted in [22],

Var(X) =
α− 1

3α− 1
. (2.6)

Let us compute the constant Aα. Putting β = 2α−1
α , we have∫ ∞

−∞
fα(x)α dx = cαα

∫ 1

−1
(1− x2)

α
α−1 dx = cαα

∫ 1

−1
(1− x2)

1
β−1 dx =

cαα
cβ
.

Hence, according to the definition (1.4) of the Rényi entropy power,

Aα =
Nα(X)

Var(X)
=

1

Var(X)

(∫ ∞
−∞

fα(x)α dx
)− 2

α−1
=

3α− 1

α− 1

(cβ
cαα

) 2
α−1

. (2.7)

For example, A2 = 125
9 ∼ 13.888... Although the expression in (2.7) is rather complicated, one

can show that Aα → 2πe ∼ 17.079 as α→ 1 (by Stirling’s formula), while Aα → 12 as α→∞,
so that Proposition 2.2 includes (2.3). This can also be seen by noting that the extremal
distribution approaches the uniform distribution on the interval (−1, 1) for large values of
α, while after a linear transformation it approaches the standard normal distribution for α
approaching 1. In the latter case, we arrive at another well-known relation

N(X) ≤ 2πeVar(X), (2.8)

where an equality is attained for all non-degenerate normal laws. Since the function α →
Nα(X) is non-increasing, we also conclude that Aα is a decreasing function in α. In particular,
(2.8) yields a slightly weaker variant of (2.4) with a universal constant, namely

Nα(X) ≤ 2πeVar(X). (2.9)

It holds for all α ≥ 1, and an equality is attained for α = 1 and all normal laws.
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3. Discrete Case: Bounds on Rényi Entropy via Variance

In order to derive similar relations in the discrete case, one may apply (2.4) to the random

variable X̃ = X + U , where U is independent of X and has a uniform distribution on the

interval (−1
2 ,

1
2). In terms of the probability function f(k) = P{X = k}, X̃ has density

f̃(x) =
∑
k∈Z

f(k) 1(k− 1
2
, k+ 1

2
)(x), x ∈ R.

It follows that

hα(X̃) ≡ − 1

α− 1
log

∫ ∞
−∞

f̃(x)α dx

= − 1

α− 1
log

∑
k∈Z

f(k)α = Hα(X),

and therefore Nα(X̃) = Nα(X). Since Var(X̃) = 1
12 + Var(X), from (2.4) we therefore obtain:

Proposition 3.1. Let 1 ≤ α ≤ ∞. For any integer valued random variable X having finite
variance,

Nα(X) ≤ Aα
( 1

12
+ Var(X)

)
, (3.1)

where the constant Aα is described in (2.5) and (2.7). In particular,

Nα(X) ≤ 2πe
( 1

12
+ Var(X)

)
.

For α =∞, we have A∞ = 12, and (3.1) yields:

Corollary 3.2. For any integer valued random variable X having finite variance,

1 ≤ N∞(X) ≤ 1 + 12 Var(X). (3.2)

In view of (2.1), the above upper bound is exactly the lower bound (1.4) in Theorem 1.1.
Note that it may also be obtained with a similar argument on the basis of Proposition 2.1,
thus without referring to Moriguti’s theorem (cf. Proposition 8.2 below).

Since in general Nα(X) ≥ 1, while the variance may take any prescribed value, the constant
1
12 may not be removed from (3.1). Nevertheless, one may ask the following question: Is it

possible to replace 1
12 in (3.1) with 1/Aα at the expense of an additional factor in front of the

variance in analogy with (2.4)? The answer is affirmative in some sense for α > 1, if we allow
the factor depend on α.

Indeed, generalizing the previous argument, let us apply (2.4) to random variables of the

form X̃ = X + U , assuming that U is independent of X and has density g(x) supported on

the unit interval. Then, X̃ has density

f̃(x) = f(k) g
(
x− k +

1

2

)
, k − 1

2
< x < k +

1

2
, k ∈ Z.
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If α > 1, it follows that ∫ ∞
−∞

f̃(x)α dx =
∑
k∈Z

f(k)α
∫ ∞
−∞

g(x)α dx,

and therefore

Nα(X̃) = Nα(X)Nα(U).

Since Var(X̃) = Var(X) + Var(U), an application of (3.2) yields

Nα(X)Nα(U) ≤ Aα
(
Var(X) + Var(U)

)
,

that is,

Nα(X) ≤ AαVar(U)

Nα(U)
+

Aα
Nα(U)

Var(X).

Here, according to Proposition 2.2, the first term on the right-hand side is minimized and is
equal to 1 when U = 1

2 Z where Z has density fα. In that case, for the second term we have

Aα
Nα(U)

=
1

Var(U)
=

4

Var(Z)
=

4(3α− 1)

α− 1
,

where we recalled the identity (2.6). Thus, we arrive at the following relation, which contains
(3.2) for α =∞.

Proposition 3.3. Let 1 < α ≤ ∞. For any integer valued random variable X having finite
variance, we have

1 ≤ Nα(X) ≤ 1 +
4(3α− 1)

α− 1
Var(X). (3.3)

4. Log-concave Sequences

We now turn to lower bounds for the Rényi entropies. This cannot be performed in terms of
variances in the entire class of discrete probability distributions, so some extra hypotheses are
needed. As it turns out, the class of discrete log-concave distributions perfectly fits our aims.
First, let us recall that a sequence {ak}k∈Z of non-negative numbers is called log-concave, if

a2k ≥ ak−1 ak+1 (4.1)

for all k ∈ Z. Similarly, a finite sequence {ak}nk=m of non-negative numbers is log-concave, if
this inequality is fulfilled whenever m+ 1 ≤ k ≤ n− 1. Defining ak = 0 for k < m and k > n,
we then obtain an infinite log-concave sequence.

Log-concave sequences appear in a purely algebraic framework. The following classical
result goes back to Newton.

Proposition 4.1. Suppose that a polynomial P (z) =
∑n

k=0

(
n
k

)
akz

k has only real zeros
over the field C of complex numbers. Then (4.1) holds true for all 1 ≤ k ≤ n− 1.

Following [26], one may give a proof based on the following observation of independent
interest due to Gauss-Lucas: For any polynomial P over C of degree deg(P ) ≥ 1, the zeros of
its derivative P ′ belong to the convex hull of the zeros of P .
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The sequences that produce polynomials with real roots give an interesting subset of the
class of sequences satisfying a log-concavity inequality. One should note that such sequences
need not have contiguous support. For example, z2 − 1 has roots ±1 and corresponds to the
sequence {1, 0,−1}.

Let us now mention the following important theorem due to Hoggar [11].

Proposition 4.2. If the coefficients of two polynomials are positive and form log-concave
sequences, then so does their product.

Note that for P (z) =
∑n

k=0 akz
k and Q(z) =

∑m
k=0 bkz

k of degrees n and m respectively,

R(z) = P (z)Q(z) =
n+m∑
k=0

ckz
k, ck =

∑
k1+k2=k

ak1bk2 .

Here, the coefficients {ck}n+mk=0 appear as the convolution of the sequences {ak}nk=0 and {bk}mk=0.
Thus, Proposition 4.2 tells us that the class of finite positive log-concave sequences is closed
under the convolution operation.

The assumption about the positivity may not be removed in this conclusion. For a counter-
example, one may take the polynomials

P (z) = 1 + z, Q(z) = 1 + z3, R(z) = 1 + z + z3 + z4,

which correspond to the sequences {1, 1}, {1, 0, 0, 1}, {1, 1, 0, 1}. Here, the first two sequences
are log-concave, while the third one is not. With this in mind, the notion of a log-concave
discrete distribution on Z should be introduced as in Introduction.

Recalling the definition (1.3), as an immediate consequence from Proposition 4.2, we obtain:

Corollary 4.3. The class of (discrete) log-concave probability distributions on Z is closed
under the convolution operation.

5. From Discrete to Continuous Log-concave Measures

Let us turn to basic properties of discrete log-concave distributions. Some of them can be
obtained by employing known results from the theory of “continuous” log-concave functions.
To this aim, we describe a simple construction, which allows one to associate with a discrete
log-concave distribution defined by a probability function a certain log-concave function on
the real line.

Given a random variableX with a discrete log-concave distributions defined by a probability
function f(k), denote by ∆ the smallest closed interval containing supp(f). Let us extend the
function

V (k) = − log f(k)

linearly on every segment [k, k + 1] ⊂ ∆, and put V = ∞ outside ∆ (if ∆ is not the whole
real line). Then V is finite and convex on ∆. To see this, assume that |∆| ≥ 2, and for
[k − 1, k + 1] ⊂ ∆, rewrite (4.1) as

V (k)− V (k − 1) ≤ V (k + 1)− V (k).
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But V (k)−V (k− 1) = V ′(x) on (k− 1, k), which means that V has a non-decreasing (Radon-
Nikodym) derivative. As a result, we obtain a log-concave function

f(x) = e−V (x), x ∈ R,

which coincides with f(k) on all integers k. Let us call it a log-piecewise linear extension of
the sequence f(k).

In general, f(x) does not need be a probability density on the line. Nevertheless, since∫ k+1

k
f(x) dx ≤ max{f(k), f(k + 1)} ≤ f(k) + f(k + 1),

after summation over all k ∈ R, we conclude that f is integrable. Let us emphasize this fact
once more.

Proposition 5.1. The restrictions of densities of finite (continuous) log-concave measures
from R to Z describe the whole class of probability functions of discrete log-concave measures.

Returning to the log-piecewise linear extension of the sequence f(k) and using an additional
property f(k) ≤ 1, an immediate consequence of the integrability of f is that, with some
constant c > 0 depending on the distribution of X,

f(k) ≤ 2 e−c|k| for all k ∈ Z.

In particular, there is a point of maximum for this sequence, which is called a mode (using a
probabilistic language). It is also a mode for the function f(x). So, it is a mode of X.

Let m ∈ Z be a mode of X. Then necessarily f(k) is non-increasing in k ≥ m and is
non-decreasing in k ≤ m. Hence∫ k+1

k
f(x) dx ≥ f(k + 1) for k ≥ m,

∫ k

k−1
f(x) dx ≥ f(k − 1) for k ≤ m.

Performing summation over all k, we get∫ ∞
−∞

f(x) dx ≥ 1− f(m).

Also, since V is linear on each interval [k, k + 1] ⊂ ∆, f(x) is convex, and therefore its graph
lies below the segment connecting the points (k, f(k)) and (k + 1, f(k + 1)). Hence∫ k+1

k
f(x) dx ≤ f(k) + f(k + 1)

2
.

Performing summation over all k, we arrive at:

Proposition 5.2. If m is mode of X and |∆| ≥ 2, then

1− f(m) ≤
∫ ∞
−∞

f(x) dx ≤ 1.

Similar bounds hold true for the second moment. In particular, one may easily derive:
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Proposition 5.3. Let X be a discrete random variable with a log-concave density f with
mode at m. If f(m) ≤ 1

2 , then the log-piecewise extension of the density satisfies

1

3
E (X −m)2 ≤

∫ ∞
−∞

(x−m)2 f(x) dx ≤ 3E (X −m)2.

Moreover, the left inequality is also true when f(m) ≥ 1
2 .

6. Second Moment and Maximum of Density

Propositions 5.2-5.3 may be used to extend a number of results about continuous log-concave
distributions to the discrete setting. Let us remind basic relations for the class of log-concave
densities on the line in the usual continuous setting. One important feature in this case is that
the general lower bound as in Proposition 2.1 may be reversed.

Keeping X to denote a discrete random variable, let Z be a (continuous) random variable
with a log-concave density g. It is supported on some closed interval ∆ ⊂ R, finite or not, which
contains a point of maximum m of g, i.e., the mode of Z (which may be one of the endpoints
of ∆ when this interval is bounded from the left or from the right). Hence M(Z) = g(m).
Together with (2.2), it is known that

1

12
≤M2(Z) Var(Z) ≤ 1, (6.1)

where an inequality on the right-hand side is achieved for the one-sided exponential distribution
with density g(x) = e−x 1(0,∞)(x) (cf. Proposition 2.1 in [4]). In fact, if g is symmetric about
m, the upper bound can be improved to

M2(Z) Var(Z) ≤ 1

2
, (6.2)

which is attained for the two-sided exponential distribution with density g(x) = 1
2 e
−|x|.

There is a similar assertion about the second moment when Z is centered at the mode.

Proposition 6.1. If a (continuous) random variable Z has a log-concave density g with
mode at the point m, then

M2(Z)E (Z −m)2 ≤ 2.

Combining this relation with the lower bound in (6.1), we also get

E (Z −m)2 ≤ 24 Var(Z).

Let us now describe an immediate application of Proposition 6.1 to the discrete setting.
Suppose that we are given an integer-valued random variable X with discrete log-concave
distribution, and denote by f(x) the log-piecewise linear extension of the probability function
f(k) = P{X = k}, k ∈ Z. Let Z be a random variable whose density g is proportional to f ,
that is, g(x) = 1

B f(x), B =
∫∞
−∞ f(x) dx. Recall that, by Proposition 5.2, B ≤ 1. Hence, by

Propositions 6.1 applied to g, we get that

f(m)2
∫ ∞
−∞

(x−m)2 f(x) dx ≤ 2B3.
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On the other hand, according to Proposition 5.3, the above integral dominates 1
3 E (X −m)2.

Combining the two inequalities, we arrive at:

Proposition 6.2. If X is a discrete random variable with a log-concave density f with
mode at m, then

M2(X)E (X −m)2 ≤ 6.

In particular,

M2(X) Var(X) ≤ 6. (6.3)

Proof of Proposition 6.1. We may assume that m = 0 and g(0) = 1. Moreover, let
a = P{Z < 0} and b = P{Z > 0} be positive.

By the log-concavity, g(x) = exp{−V (x)} for some convex function V : R → [0,∞] with

V (0) = 0. Putting g̃(x) = exp{−Ṽ (x)} with Ṽ (x) = x/b for x ≥ 0 and Ṽ (x) = −x/a for
x ≤ 0, we obtain another log-concave probability density such that∫ 0

−∞
g(x) dx =

∫ 0

−∞
g̃(x) dx = a,

∫ ∞
0

g(x) dx =

∫ ∞
0

g̃(x) dx = b.

Since Ṽ is linear on [0,∞) and Ṽ (0) = 0, necessarily V (x) ≤ Ṽ (x) on the interval 0 ≤ x < x0
and V (x) ≥ Ṽ (x) on the half-axis x > x0 for some x0 > 0. Equivalently, g(x) ≥ g̃(x) for
0 ≤ x < x0 and g(x) ≤ g̃(x) for x > x0. Introduce the distribution functions

G(x) = P{Z ≤ x} =

∫ x

−∞
g(y) dy and G̃(x) =

∫ x

−∞
g̃(y) dy.

It follows that the function ψ(x) = G(x)− G̃(x) is vanishing at the origin and at infinity, and
its derivative is non-negative on [0, x0) and non-positive on (x0,∞). Hence ψ(x) ≥ 0 for all
x ≥ 0. This implies that∫ ∞

0
x2 g(x) dx−

∫ ∞
0

x2 g̃(x) dx = −2

∫ ∞
0

xψ(x) dx ≤ 0.

By the same argument, a similar inequality holds when integrating over the negative half-axis.
Hence

EZ2 =

∫ ∞
−∞

x2 g(x) dx ≤
∫ ∞
−∞

x2 g̃(x) dx = 2 (a3 + b3) ≤ 2 (a+ b)3 = 2.

�

Remark. In terms of the Rényi entropy powers, the inequalities (6.1)-(6.2) take the form

1

12
N∞(Z) ≤ Var(Z) ≤ N∞(Z), Var(Z) ≤ 1

2
N∞(Z). (6.4)

Here, the first inequality is general and corresponds to (2.4) in the limit case α = ∞, while
the upper bounds on the variance hold for log-concave probability measures (symmetric in the
second case). Similarly to (2.4), these upper bounds may be extended to the whole range of α
at the expense of certain α-dependent factors. Although the extremal log-concave distributions
are not known so far, one particular case may easily be settled. Given a random variable Z
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with a log-concave distribution, let us apply the second upper bound in (6.4) to Z̃ = Z − Z ′,
where Z ′ is an independent copy of Z. Since N∞(Z̃) = N2(Z), we then obtain that

Var(Z) ≤ 1

4
N2(Z).

Here, we have an equality for the exponential distribution, and thus the conclusion that among
continuous log-concave variables on the real line, the exponential distribution has minimal 2-
Rényi entropy, often referred to as collision entropy.

7. Sharpenings via Rearrangement Arguments

The inequality (6.3) may be sharpened and generalized by involving more delicate arguments
based on the so-called rearrangement of densities. Similarly to the continuous setting, these
arguments allow one to explore an extremal role of a discrete counterpart of the exponential
distributions. More precisely, when a probability mass function f : Z→ [0,∞) can be written

as f(k) = Cp|k| for some 0 ≤ p < 1, we will call it a symmetric two-sided geometric distribution.
Here, the symmetry property refers to the identity f(−k) = f(k).

Let us start with basic definitions.

Definition (Decreasing rearrangement). For a probability function f : Z→ [0,∞), denote
by f↓ its decreasing rearrangement. Explicitly, f↓ is defined on N and satisfies f↓(k) ≥ f↓(k+1)
for all k ≥ 0 and there exists a bijection τ : N→ Z such that f↓(k) = f(τ(k)).

Definition (Majorization). Given probability functions f and g on Z, we say that f
majorizes g and write f � g, when

∑n
k=0 f

↓(k) ≥
∑n

k=0 g
↓(k) for all n ≥ 0.

We extend this notion to random variables by writing X � Y when f � g holds for their
respective probability functions.

Definition (Schur-Concavity). A functional Φ defined on a given family of probability
functions on N is called Schur-convex, when f � g implies Φ(f) ≥ Φ(g). A functional Φ is
Schur-concave when −Φ is Schur-convex.

We extend Schur-convexity/concavity to random variables by asking that Schur-convexity/
concavity hold for the respective probability mass functions.

Lemma 7.1 ([20]). Any symmetric log-concave probability function f majorizes the sym-
metric two-sided geometric distribution g with the same maximum as f .

A more general result was actually first proven in [19]. We include a proof of Lemma 7.1
for completeness.

Proof. Let q ∈ [0, 1]. Define, for k ∈ Z, gq(k) = q|k|f(0) with the convention that 00 = 1.
Note that ∑

k∈Z
g0(k) = f(0) ≤

∑
k∈Z

f(k) = 1
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and
∑

k∈Z g1(n) =∞. Since the function q 7→
∑

k∈Z gq(k) is continuous and strictly increasing
on [0, 1], we deduce by the intermediate value theorem that there exists a unique q∗ ∈ [0, 1)
such that ∑

k∈Z
gq∗(k) =

∑
k∈Z

f(k) = 1.

By construction, gq∗ is the probability function of a two-sided geometric distribution. Denote
by the same letters f and gq the corresponding log-piecewise linear extensions. In particular,

max
x∈R

gq∗(x) = gq∗(0) = f(0) = max
x∈R

f(x).

Thus, the function L = − log gq∗ is affine on [0,∞), while V = − log f is convex, with L(0) =
V (0). Hence, there must exist l ≥ 0 such that V ≤ L on [0, l] and V ≥ L on [l,∞), that is,

f ≥ gq∗ on [0, l] and f ≤ gq∗ on [l,∞). Hence, for all n ≥ 0,
∑n

k=0 f
↓(k) ≥

∑n
k=0 g

↓
q∗(k). �

Lemma 7.2 (Schur-concavity of moments on symmetric log-concaves). If the function
u : [0,∞)→ [0,∞) is non-decreasing, then the functional Φ(f) = Eu(|X|) is Schur concave on
the set of symmetric discrete log-concave probability functions.

Proof. By linearity of Φ with respect to u, one may assume that u(x) = 1(λ,∞)(x) for some
integer λ ≥ 0. Suppose that X and Y are symmetric log-concave variables such that fX � fY .
By symmetry, unimodality and the assumed majorization, we have

Eu(|X|) = P{|X| > λ} = 1− P{|X| ≤ λ} = 1−
λ∑

k=−λ
fX(k)

= 1−
2λ∑
k=0

f↓X(k) ≤ 1−
2λ∑
k=0

f↓Y (k) = P{|Y | > λ} = Eu(|Y |),

and the result follows. �

We are prepared to settle the upper bound of Theorem 1.1 in the symmetric case (and in
somewhat more general form).

Proposition 7.3. Let Ψ: [0,∞)→ [0,∞) be a non-decreasing function. For any symmetric
discrete log-concave random variable X,

M(X) Ψ(Var(X)) ≤ sup
0≤p<1

[
1− p
1 + p

Ψ
( 2p

(1− p)2
)]
.

In particular,

M2(X) (1 + 2 Var(X)) ≤ 1. (7.1)

The latter inequality becomes an equality for all two-sided geometric distributions.

Proof. Given X a symmetric log-concave random variable, let Y be the two sided geometric
distribution with same maximum (necessarily attained at 0). Then by Lemma 7.1, we have
X � Y , so that by Lemma 7.2, Var(X) ≤ Var(Y ). Thus

M(X) Ψ(Var(X)) ≤ M(Y ) Ψ(Var(Y )).
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Note that for a two sided geometric distribution with probability mass function g(k) = Cp|k|,
0 ≤ p < 1, one has

C−1 =
∑
k∈Z

p|k| =
1 + p

1− p
, M(Y ) = C =

1− p
1 + p

,

Var(Y ) = EY 2 =
2p

(1− p)2
.

Hence

M(Y ) Ψ(Var(Y )) ≤ sup
p∈[0,1)

[
1− p
1 + p

Ψ
( 2p

(1− p)2
)]
.

In particular, for Ψ(x) =
√

1 + 2x, the function under the above supremum is equal to 1
for any value of the parameter p, and we obtain (7.1) together with the assertion about the
extremal role of two-sided geometric distributions. �

While (7.1) is a full analog of the inequality (6.2) from the continuous setting under the
symmetry hypothesis, the more general inequality (6.1) also extends to the discrete setting.
The next assertion provides the upper bound of Theorem 1.1 in the non-symmetric case.

Proposition 7.4. For any discrete log-concave random variable X,

M2(X) (1 + 4 Var(X)) ≤ 4. (7.2)

This bound is asymptotically attained for one-sided geometric distributions. In particular,

M2(X) Var(X) ≤ 1. (7.3)

Proof. We employ another relation,

Hα(X) ≤ H∞(X) + log
(
α

1
α−1
)
, 0 < α <∞, (7.4)

which was recently obtained in [20] using the rearrangement arguments. This inequality holds
for any discrete log-concave random variableX and is asymptotically attained for the geometric
distributions with probability functions f(k) = (1− p) pk, k ≥ 0, as p → 1. In particular, for
α = 2, it takes the form H2(X) ≤ H∞(X) + log 2, which is the same as

M(X) ≤ 2
∑
k∈Z

f(k)2 (7.5)

in terms of the probability function f(k) of X.
Note that, if Y is an independent copy of X, the random variable X − Y will have a

symmetric discrete log-concave distribution with

M(X − Y ) = P{X − Y = 0} =
∑
k∈Z

f(k)2, (7.6)

so that, by (7.5),

M2(X) ≤ 4M2(X − Y ). (7.7)

On the other hand, by Proposition 7.3, M2(X − Y ) (1 + 2 Var(X − Y )) ≤ 1, that is,

M2(X − Y ) (1 + 4 Var(X)) ≤ 1.
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It remains to apply this inequality in (7.7). �

Note that for the geometric distribution with probability function f(k) = (1− p) pk, k ≥ 0,
we have M2(X) (1 + 4 Var(X)) = (1 + p)2. Hence, (7.2) is asymptotically attained for p→ 1.

8. Concentration Functions

Turning to applications, first let us relate the concentration function to the M -functional.

Lemma 8.1. For any random variable X,

Q(X;λ) = λM(X + Uλ), λ > 0, (8.1)

where the random variable Uλ is independent of X and has a uniform distribution on the
interval (0, λ). Analogously, in the discrete setting, we have

Q(X;λ) = (λ+ 1)M(X + Uλ), λ = 0, 1, 2, . . . , (8.2)

assuming that the random variable Uλ is independent of X and has a discrete uniform distri-
bution on the integer interval {0, 1, . . . , λ}.

Proof. The first claim follows from the fact that the random variable Xλ = X + Uλ has
an absolutely continuous distribution with density

fλ(x) =
1

λ
P{x− λ ≤ X ≤ x} a.e.

According to the definition (1.1), this formula yields

M(Xλ) = ess esupx fλ(x) =
1

λ
Q(X;λ).

For the second claim, we similarly have that Xλ takes integer values with probabilities

fλ(k) =
1

λ+ 1
P{k − λ ≤ X ≤ k}, k ∈ Z.

Since the supremum in (1.1) is attained for some integer value x = k, Lemma 8.1 follows. �

One can now apply the lower bound of Proposition 2.1, cf. (2.2), to the random variables
Xλ in (8.1). This leads to a corresponding lower bound for the concentration function (which
is actually known, cf. [4]).

Proposition 8.2. For any random variable X,

Q(X;λ) ≥ λ√
λ2 + 12 Var(X)

, λ > 0. (8.3)

As a consequence, applying (8.3) with λ ↑ 1 in the discrete setting, we arrive at the lower
bound (1.4) in Theorem 1.1. Note that since in general M(X) ≤ 1, while the variance may
take any prescribed value (already within specific families such as Poisson distributions), the
constant 1 may not be removed from the square root in (1.4).
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More generally, if the random variable X is discrete and λ ≥ 0 is integer, we apply (8.3)
with λ′ ↑ λ+ 1, so that to get in the limit

Q(X;λ) ≥ λ+ 1√
(λ+ 1)2 + 12 Var(X)

. (8.4)

For the upper bound, one may start from the identity (8.2) and apply the upper bounds of
Theorem 1.1 to the random variables Xλ = X + Uλ in place of X, assuming that the random
variable Uλ is independent of X and has a discrete uniform distribution on the integer interval
{0, 1, . . . , λ}. Note that Xλ is symmetric around the point λ/2, if X is symmetric about the
origin. Since

Var(Uλ) =
λ(λ+ 2)

12
,

together with (8.4) we are lead to the following statement.

Proposition 8.3. If the random variable X has a log-concave discrete distribution, then,
for any integer λ ≥ 0,

λ+ 1√
1 + λ(λ+ 2) + 12 Var(X)

≤ Q(X;λ) ≤ 2 (λ+ 1)√
1 + λ(λ+2)

3 + 4 Var(X)
.

Moreover, if the distribution of X is symmetric about a point, then the upper bound may be
sharpened to

Q(X;λ) ≤ λ+ 1√
1 + λ(λ+2)

6 + 2 Var(X)
.

Here, the value λ = 0 returns us to the statement of Theorem 1.1.

9. Proof of Theorems 1.2-1.3

Let X1, . . . , Xn be independent discrete random variables, and Sn = X1 + · · ·+Xn.

Proof of Theorem 1.2. First, consider the symmetric case. By Proposition 3.3, for any
integer valued random variable X having a finite variance,

∆α(X) ≤ 4(3α− 1)

α− 1
Var(X).

On the other hand, if the distribution of X is symmetric about a point and log-concave, the
inequality (1.5) of Theorem 1.1 yields a lower bound

∆∞(X) ≥ 2 Var(X). (9.1)

Since the function α→ ∆α(X) is non-increasing, the two inequalities give

2 Var(X) ≤ ∆α(X) ≤ 4(3α− 1)

α− 1
Var(X). (9.2)
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Applying this to Xk’s, as well as to X = Sn, we then get

∆α(Sn) ≥ 2 Var(Sn) = 2
n∑
k=1

Var(Xk) ≥
α− 1

2(3α− 1)

n∑
k=1

∆α(Xk).

In fact, up to an α-dependent constant, this upper bound may be reversed, since, by (9.2),
we also have

∆α(Sn) ≤ 4(3α− 1)

α− 1
Var(Sn)

≤ 4(3α− 1)

α− 1

n∑
k=1

Var(Xk) ≤
2(3α− 1)

α− 1

n∑
k=1

∆α(Xk).

This proves the desired relations in (1.10).
Now, suppose that 1 < α ≤ 2 and drop the symmetry assumption. If Y is an independent

copy of X, the random variable X̃ = X − Y will have a symmetric discrete log-concave
distribution. Hence, (9.1) is applicable to X̃. On the other hand, the identity (7.6) reads as

N∞(X̃) = N2(X), that is, ∆∞(X̃) = ∆2(X). Hence, from (9.1) we get that

∆α(X) ≥ ∆2(X) ≥ 4 Var(X).

Combining this with the upper bound in (9.2), we arrive at its sharpened variant

4 Var(X) ≤ ∆α(X) ≤ 4(3α− 1)

α− 1
Var(X). (9.3)

It remains to apply this to Xk’s, as well as to X = Sn similarly as above, and then we
obtain the lower bound as in (1.10) with an improved constant. The proof of the upper bound
is based on (9.3) and is also similar. �

Remark. In the case α =∞, (1.10) takes the form

1

6

n∑
k=1

∆∞(Xk) ≤ ∆∞(Sn) ≤ 6
n∑
k=1

∆∞(Xk).

Here, the lower bound reminds the relation

N∞(Sn) ≥ 1

2

n∑
k=1

N∞(Xk)

for the continuous setting (without any assumptions on the shape of distributions, cf. [2, 16]).
Since the functions α→ ∆α(X) are non-increasing, it implies that

∆1(Sn) ≥ 1

6

n∑
k=1

∆∞(Xk).

However, one cannot estimate ∆∞(Xk) in terms of ∆1(Xk). This can be seen on the example

of the two-sided geometric distribution with probability function f(k) = Cp|k|, k ∈ Z, for small
0 < p < 1. In this case,

∆∞(X) = 2 Var(X) =
4p

(1− p)2
,
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which corresponds to the equality in (1.5), while

H(X) = − log(1− p) + log(1 + p)− 2p log p

(1− p)(1 + p)
.

As p→ 0, we have H(p) ∼ 2p log(1/p), hence

∆(X) = N(X)− 1 = e2H(X) − 1

∼ 2H(X) ∼ 4p log(1/p) ∼ 2 Var(X) log(1/p).

Proof of Theorem 1.3. Suppose that Var(Xk) ≥ σ2 for all k ≤ n with some σ > 0.
By Proposition 3.1, if X is a discrete random variable with Var(X) ≥ σ2, we have

Nα(X) ≤ 2πe
(

1 +
1

12σ2

)
Var(X)

for any α ≥ 1. In addition, according to the upper bound (1.4) of Theorem 1.1,

N∞(X) ≥ 1

4
+ Var(X) ≥ Var(X). (9.4)

Since α→ Nα(X) is a non-increasing function, these bounds imply that

Var(X) ≤ N∞(X) ≤ Nα(X) ≤ 2πe
(

1 +
1

12σ2

)
Var(X). (9.5)

Being applied first to X = Sn and then to each X = Xk, (9.5) yields

Nα(Sn) ≥ Var(Sn) =
n∑
k=1

Var(Xk) ≥
1

2πe (1 + 1
12σ2 )

n∑
k=1

Nα(Xk).

This proves the first assertion (1.11) of the theorem.
By a similar argument, the resulting bound may be reversed, even without any condition

on variances, and actually further strengthened. Indeed, applying (9.5) to X = Sn and using
the first inequality in (9.4) in the weaker form Nα(Xk) ≥ 1

4 + Var(Xk), we have

Nα(Sn) ≤ 2πe
( 1

12
+ Var(Sn)

)
= 2πe

( 1

12
+

n∑
k=1

Var(Xk)
)
≤ 2πe

( 1

12
+

n∑
k=1

(
Nα(Xk)−

1

4

))
,

and (1.12) immediately follows. �

10. Remarks on Bernoulli sums

Finally, let us illustrate Theorem 1.1 on the example of the Bernoulli sums

Sn = X1 + · · ·+Xn,

where the independent summands Xk take the values 1 and 0 with probabilities pk and qk
respectively. By Hoggar’s theorem on preservation of log-concavity under convolutions, the
distribution of Sn is discrete log-concave (Corollary 4.3). This property is not so obvious on
the basis of the explicit expression for the probability function

fn(k) = P{Sn = k} =
∑

pε11 q
1−ε1
1 . . . pε1n q

1−εn
n , k = 0, 1, . . . , n,
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where the summation is running over all 0− 1 sequences ε1, . . . , εn such that ε1 + · · ·+ εn = k.
One of the challenging problems about Sn has been to how effectively estimate from above

the maximum M(Sn) = maxk fn(k) in terms of pk’s. In this particular model, there exist
several different approaches to the problem. First let us describe the standard approach in
Probability Theory which is irrelevant to log-concavity. In general, the concentration function
of a random variable X may be bounded in terms of the characteristic function v(t) = E eitX
by virtue of Esseen’s bound

Q(X;λ) ≤
(96

95

)2
λ

∫ 1/λ

−1/λ
|v(t)| dt, λ > 0, (10.1)

cf. e.g. [23], [24]. For the characteristic function of Sn we have v(t) =
∏n
k=1(qk + pke

it). Since

|q + peit|2 = p2 + q2 + 2pq cos t = 1− 4pq sin2(t/2) ≤ exp{−4pq sin2(t/2)},
it follows that

|v(t)| ≤ exp
{
− 2

n∑
k=1

pkqk sin2(t/2)
}

= exp
{
− 2σ2 sin2(t/2)

}
,

where σ2 = Var(Sn) (σ > 0). Using | sinx| ≥ 2
π |x| for |x| ≤ π/2 and choosing λ = 1/π in

(10.1), this bound yields

Q(Sn; 0) ≤
(96

95

)2 1

π

∫ π

−π
exp

{
− 2σ2 sin2(t/2)

}
dt

≤
(96

95

)2 1

π

∫ ∞
−∞

exp
{
− 2σ2

π2
t2
}
dt =

(96

95

)2 1

σ
√

2

√
π.

That is, simplifying the numerical constant, we arrive at

M(Sn) ≤ 1.28√
Var(Sn)

, Var(Sn) =
n∑
k=1

pkqk.

As we now see, the constant 1.28 in this inequality can be improved by virtue of the upper
bound (1.4) which yields

M(Sn) ≤ 2√
1 + 4Var(Sn)

≤ 1√
Var(Sn)

. (10.2)

Moreover, the best universal constant c > 0 in

M(Sn) ≤ c√
Var(Sn)

(10.3)

is actually better than 1. As was shown in [1], the optimal constant is given by

c = max
λ≥0

[√
2λ e−2λ

∞∑
k=0

(λk
k!

)2]
∼ 0.4688.

One should however mention that the first inequality in (10.2) is better than (10.3) for small
values of Var(Sn), namely when

Var(Sn) <
c2

4 (1− c2)
∼ 0.0704.
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So, it makes sense to consider improvements in the form M(Sn) ≤ Ψ(Var(Sn)).
Note that the upper bound in (1.4) also provides a similar lower bound which may equiv-

alently be rewritten as

N∞(Sn) ≥ 1

4
+ Var(Sn).

In [21] this inequality is sharpened and is extended to all α-entropy powers with α ≥ 2 as

Nα(Sn) ≥ 1 + 2βVar(Sn),
1

α
+

1

β
= 1.
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[19] Melbourne, J.; Tkocz, T. On the Rényi entropy of log-concave sequences. June 2020. IEEE Int.
Symposium on Info. Theory (ISIT) (pp. 2292-2296).

[20] Melbourne, J. and Tkocz, T., 2020. Reversal of Rényi entropy inequalities under log-concavity.
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